5 research outputs found

    A methodology for hardware-software codesign

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 150-156).Special purpose hardware is vital to embedded systems as it can simultaneously improve performance while reducing power consumption. The integration of special purpose hardware into applications running in software is difficult for a number of reasons. Some of the difficulty is due to the difference between the models used to program hardware and software, but great effort is also required to coordinate the simultaneous execution of the application running on the microprocessor with the accelerated kernel(s) running in hardware. To further compound the problem, current design methodologies for embedded applications require an early determination of the design partitioning which allows hardware and software to be developed simultaneously, each adhering to a rigid interface contract. This approach is problematic because often a good hardware-software decomposition is not known until deep into the design process. Fixed interfaces and the burden of reimplementation prevent the migration of functionality motivated by repartitioning. This thesis presents a two-part solution to the integration of special purpose hardware into applications running in software. The first part addresses the problem of generating infrastructure for hardware-accelerated applications. We present a methodology in which the application is represented as a dataflow graph and the computation at each node is specified for execution either in software or as specialized hardware using the programmer's language of choice. An interface compiler as been implemented which takes as input the FIFO edges of the graph and generates code to connect all the different parts of the program, including those which communicate across the hardware/software boundary. This methodology, which we demonstrate on an FPGA platform, enables programmers to effectively exploit hardware acceleration without ever leaving the application space. The second part of this thesis presents an implementation of the Bluespec Codesign Language (BCL) to address the difficulty of experimenting with hardware/software partitioning alternatives. Based on guarded atomic actions, BCL can be used to specify both hardware and low-level software. Based on Bluespec SystemVerilog (BSV) for which a hardware compiler by Bluespec Inc. is commercially available, BCL has been augmented with extensions to support more efficient software generation. In BCL, the programmer specifies the entire design, including the partitioning, allowing the compiler to synthesize efficient software and hardware, along with transactors for communication between the partitions. The benefit of using a single language to express the entire design is that a programmer can easily experiment with many different hardware/software decompositions without needing to re-write the application code. Used together, the BCL and interface compilers represent a comprehensive solution to the task of integrating specialized hardware into an application.by Myron King.Ph.D

    An efficient sequential BTRS implementation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (leaves 73-74).This thesis describes the implementation of BTRS, a language based on guarded atomic actions (GAA). The input language to the compiler which forms the basis of this work is a hierarchical tree of modules containing state, interface methods, and rules which fire atomically to cause state transitions. Since a schedule need not be specified, the program description is inherently nondeterministic, though the BTRS language does allow the programmer to remove nondeterminism by specifying varying degrees of scheduling constraints. The compiler outputs a (sequential) single-threaded C implementation of the input description, choosing a static schedule which adheres to the input constraints. The resulting work is intended to be used as the starting point for research into efficient software synthesis from guarded atomic actions, and ultimately a hardware inspired programming methodology for writing parallel software. This compiler is currently being used to generate software for a heterogeneous system in which the software and hardware components are both specified in BTRS.by Myron Decker King.S.M

    Verification of microarchitectural refinements in rule-based systems

    Get PDF
    http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5970511&tag=1Microarchitectural refinements are often required to meet performance, area, or timing constraints when designing complex digital systems. While refinements are often straightforward to implement, it is difficult to formally specify the conditions of correctness for those which change cycle-level timing. As a result, in the later stages of design only those changes are considered that do not affect timing and whose verification can be automated using tools for checking FSM equivalence. This excludes an essential class of microarchitectural changes, such as the insertion of a register in a long combinational path to meet timing. A design methodology based on guarded atomic actions, or rules, offers an opportunity to raise the notion of correctness to a more abstract level. In rule-based systems, many useful refinements can be expressed simply by breaking a single rule into smaller rules which execute the original operation in multiple steps. Since the smaller rule executions can be interleaved with other rules, the verification task is to determine that no new behaviors have been introduced. We formalize this notion of correctness and present a tool based on SMT solvers that can automatically prove that a refinement is correct, or provide concrete information as to why it is not correct. With this tool, a larger class of refinements at all stages of the design process can be verified easily. We demonstrate the use of our tool in proving the correctness of the refinement of a processor pipeline from four stages to five.National Science Foundation (U.S.) (NSF (#CCF-0541164)

    BlueDBM: An Appliance for Big Data Analytics

    Get PDF
    Complex data queries, because of their need for random accesses, have proven to be slow unless all the data can be accommodated in DRAM. There are many domains, such as genomics, geological data and daily twitter feeds where the datasets of interest are 5TB to 20 TB. For such a dataset, one would need a cluster with 100 servers, each with 128GB to 256GBs of DRAM, to accommodate all the data in DRAM. On the other hand, such datasets could be stored easily in the flash memory of a rack-sized cluster. Flash storage has much better random access performance than hard disks, which makes it desirable for analytics workloads. In this paper we present BlueDBM, a new system architecture which has flash-based storage with in-store processing capability and a low-latency high-throughput inter-controller network. We show that BlueDBM outperforms a flash-based system without these features by a factor of 10 for some important applications. While the performance of a ram-cloud system falls sharply even if only 5%~10% of the references are to the secondary storage, this sharp performance degradation is not an issue in BlueDBM. BlueDBM presents an attractive point in the cost-performance trade-off for Big Data analytics.Quanta Computer (Firm)Samsung (Firm)Lincoln Laboratory (PO7000261350)Intel Corporatio

    Implementing a fast cartesian-polar matrix interpolator

    No full text
    The 2009 MEMOCODE Hardware/Software Co-Design Contest assignment was the implementation of a cartesian-to-polar matrix interpolator. We discuss our hardware and software design submissions
    corecore